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1 Introduction

Let F = (Ft)t≥0 be a stochastic process adapted to a filtration (Ft)t≥0. Let a and b some appropriate
function mapping Ω× R to R. A one-dimensional stochastic differential equation takes the form of

dXt = a(·, Xt) dt+ b(·, Xt) dFt (1)

which is just the differential representation of the following integral

Xt(ω) = X0(ω) +

∫ t

0
a(ω,Xt(ω)) dt+

∫ t

0
b(ω,Xt(ω)) dFt(ω) (2)
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The differential form of the equation in (1) may be interpreted as follows: the change in X is driven by
a deterministic source due to time and a random change due to some (or many) unexplainable sources.
These form of equations is particularly useful to model real-world behaviors where there is perceived
randomness influencing them e.g. stock price movements, particle trajectory on a fluid, or the spread of
a disease.

The adapted stochastic process X = (Xt)t≥0 satisfying (2) almost-surely is called the solution to (1) with
initial condition X0. If F has a finite variation a.s., then the second integral in (2) may be interpreted
as the Lebesgue-Stiltjes type. If that is the case, the solution may be constructed using the theory of
deterministic ordinary differential equations.

Unfortunately in general, F may have infinite variation. Indeed, the Brownian motion, which is one of the
most well-known adapted process, has infinite variation and undifferentiable everywhere. Consequently,
the theory of stochastic integration such as Itô and Stratonovich calculus were developed to tackle this
problem.

The existence or construction of SDE solutions may be obtained using analytical (or limiting) arguments
such as Picard iteration. Unfortunately, these methods may not be practical to implement computation-
ally as they may rely on being able to observe the source process F at any time (no information gaps).
Instead, an approximation of F is used where the process are sampled on some finite points on the time
interval and interpolated on the gaps. Then the solution may be approximated by

dX∗t = a(·, X∗t ) dt+ b(·, X∗t ) dF ∗t + correction term (3)

where F ∗ is the approximating (sampled) process. This type of approximations is called the Wong-Zakai
approximation.

In this paper, we first discuss the theory of conditional expectations, martingales, Itô’s integral and Itô’s
rule. We do not discuss the proof of these preliminaries; we focus on the motivations instead (and perhaps
the rough outline of the proof). Next, we present the construction of an SDE solution using Picard’s
iteration. Furthermore, we describe two methods of solving two special case of SDE involving turning
these into a problem of solving deterministic ODEs. We then prove the convergence of Wong-Zakai
approximations for non-regime-switching SDEs. Lastly, we present a result developed by (Nguyen &
Peralta, 2021) on the convergence rate of Wong-Zakai approximations for the regime-switching SDEs.

2 Preliminaries

In this section we will describe preliminary theorems needed for stochastic differential equations theory
but we will not prove them. Instead, we will present some motivations on the ”basic” definitions and
theorems of conditional expectation, martingales, and Itô’s calculus.

2.1 Conditional Expectation

Let us imagine a sequence of prices (which is of course random) from a stock, each element in the
sequence came from different times in the past. Of course, if we know the price at, let’s say, time t,
we automatically know the previous prices, but not necessarily the future prices. We might say that all
information from the past is included in the next information. Using concepts from measure theory, we
may mathematically define this characteristics of increasing information like this.

Definition 2.1 (Filtration). Let (Ω,F,P) be a probability triple. A collection of sub-sigma algebras
(Ft)t∈I with respect to sigma-algebra F and a totally-ordered time-index set I is a filtration if Fs ⊆ F

and Fs ⊆ Ft for every s, t ∈ I and s < t.
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Of course, knowing the stock price at a time means knowing the previous prices, but not necessarily the
future values. Using concept of measurability, we can define such collection of random variables as below.

Definition 2.2 (One-dimensional Adapted Stochastic Process). Let (Ft)t∈I be a filtration with respect
to the sigma-algebra F and the totally-ordered time-index set I. An adapted stochastic process X is a
collection of random variables (Xt)t∈I indexed by I such that for every t ∈ I, Xt is Ft measurable, that
is,

X−1
t (B) = {ω ∈ Ω : Xt(ω) ∈ B} ∈ Ft

for every Borel set B in R.

Definition 2.3 (One-dimensional Progressively Measurable Stochastic Process). Let (Ft)t∈I be a fil-
tration with respect to the sigma-algebra F and the time-index set I. Let At = σ(B([0, t]) × Ft) (the
smallest sigma-algebras containing the product of the Borel σ-algebra of [0, t] and Ft). A stochastic
process X = (Xt)t is progressively measurable if the map [0, t]×Ω→ Xt(ω) defined by (s, ω) 7→ Xs(ω) is
At measurable, that is

X−1(B) = {(s, ω) : Xs(ω) ∈ B} ∈ At

for every Borel set B in R.

Now, we are interested to determine the expected price in the future, based on the information we have
gathered consisting of historical data of the prices. Let us say we are currently at time s and we have
observed the initial price Xt. We would like to know the expected value of Xt at time t in the future based
on all information available at the present. Thus we may collapse all possible information about the past
and only consider the ones matching our observations. This kind of ”collapsing possible informations” is
akin to a concept in linear algebra called orthogonal projection. With orthogonal projection, we only care
about the smaller sub-vector space and ignore anything orthogonal to it (in the case of random variables,
orthogonality is interpreted as uncorrelation).

To make sense of this ”orthogonal projection”, we need a Hilbert space for random variables. Of course,
the natural space of functions (or random variables) with Hilbert characteristics is the square-integrable
one, that is, all random variable X to the probability triple (Ω,F,P) with finite 2-moment.

E
[
|X|2

]
=

∫
Ω
|X|2 dP <∞

Let us denote such space as L2(Ω,F,P). Now, we may collapse the collection of all possible events F

into a smaller sub-sigma algebras G after taking all present information into account. From functional
analysis, the space L2(Ω,G,P) is a sub-Hilbert space of L2(Ω,F,P), which guarantees that the orthogonal
projection from L2(Ω,F, P ) to L2(Ω,G,P) exists and is unique (this is from Riesz representation theorem).
Let us denote such projection as T .

The inner product in Hilbert function (or random variable) space is the integral of the multiplication

〈X,Y 〉 =

∫
Ω
XY dP

so from the properties of orthogonal projection, we need to have

0 = 〈T (X)−X,Y 〉 for all X ∈ L2(Ω,F,P), Y ∈ L2(Ω,G,P)

Of course for all G ∈ G, the indicator function 1G is G-measurable and has finite second-moment.
Also, from functional analysis, the space of linear combinations of such indicator functions is dense
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in L2(Ω,G,P), so we may restrict Y to be such indicator function and still obtain the same orthogonal
projection.

Theorem 2.1. If T is a continuous linear operator from L2(Ω,F,P) to L2(Ω,G,P) such that

0 = 〈T (X)−X,1G〉 for all G ∈ G

then T is the orthogonal projection from L2(Ω,F,P) to L2(Ω,G,P).

To make things clear, from now on the inner product will be written in its integral form. Thus we may
write

∫
Ω

(T (X)−X)1G dP = 0 for all X ∈ L2(Ω,F,P), G ∈ G (4)

⇔
∫
G
T (X) dP =

∫
G
X dP (5)

From this, we may define conditional expectation as follows.

Definition 2.4 (Conditional Expectation). Let (Ω,F,P) be a probability triple and G ⊆ F is a sub-sigma
algebra.

Then the conditional expectation with respect to G is the unique continuous linear operator T : L2(Ω,F,P)→
L2(Ω,G,P) such that

∫
G
T (X) dP =

∫
G
X dP ∀X ∈ L2(Ω,F,P), G ∈ G (6)

We denote T (X) as E [X|G], which reads as the conditional expectation of X w.r.t. G.

Conditional expectations have several properties as presented in the following theorem.

Theorem 2.2 (Properties of Conditional Expectation). Let X,Y ∈ L2(Ω,F,P) and F0 is a sub-sigma
algebra of F. Then

(i) (Linearity) E [aX + bY |F0] = aE [X|F0] + bE [Y |F0]

(ii) (Monotonicity) If X ≤ Y a.s., then E [X|F0] ≤ E [Y |F0]

(iii) (The Tower Property) If F1 is a subsigma algebra of F0, then E [E [X|F0] |F1] = E [X|F1] =
E [E [X|F1] |F0]

(iv) (Law of Total Expectation) E [E [X|F0]] = E [X]

(v) (Jensen’s Inequality) If φ is a convex function, then φ(E [X|F0]) ≤ E [φ(X)|F0]

2.2 Martingales

Let us consider an easier process, for example a gambling process. Suppose one gains 1 dollar if a coin
toss resulted in the number part faced upward, loses 1 dollar otherwise. It is reasonable to suppose that
the probability of getting the number part of the coin equals the picture part, 1/2 each. Suppose also
that every coin toss is independent of each other. Then of course at any time, the expected additional
gains we will get at any future time is zero because the expected gains of each coin toss is 0 (and the coin
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tosses are independent). Because it is expected that we gain no additional coins, the expected number
of coins we have at any future time is exactly equal the number of coins we currently have.

This type of process, where the expected value of a process at any future time equals the current value
is called a martingale. In fact, this term martingale came from gambling.

Definition 2.5 (Martingale). Suppose that (Xt)t∈I is a process adapted to filtration (Ft)t∈I on the
probability space (Ω,F, P ). This process is called a martingale if

E [Xs|Ft] = Xt ∀s < t in I

The most famous example of martingale is the one we’ve described earlier on gambling, which is also
called a random walk. Of course it is a discrete-time martingale. For the continuous-time martingale, the
most well-known example is the Wiener process, or more commonly known as the Brownian motion.

Definition 2.6 (One-dimensional Brownian motion). A continuous-time process (Xt)t ≥ 0 is called a
Brownian motion if it satisfies the following properties:

1. X0 = 0 a.s.

2. For every n ∈ N and 0 < t1 < t2 < ... < tn < ∞, the random variables Xt1 −Xt0 , Xt2 −Xt1 , ...,
Xtn −Xtn−1 are mutually independent.

3. For every 0 ≤ s < t <∞, the increment Xt−X(s) is normally distributed with mean 0 and variance
t− s.

4. The process (Xt)t ≥ 0 is continuous almost surely, that is

P (t 7→ Xt is continuous) = 1

Several constructions have been proposed to ensure the existence of such Brownian motion, most of which
restrict the time interval on [0, 1]. One of them is using the Haar wavelets as described in (Steele, 2001).
The other one is described in (McKnight, 2009) by defining X0 = 0 and X1 a N(0, 1)-distributed random
variable, then successively interpolating on each midpoint of all dyadic intervals [j2−k, (j + 1)2−k] for
all j, k nonnegative integers and adding independent normally-distributed noises of mean 0 and scaled
variances, then define the process as the limit of each dyadic points.

Now let us consider back our gambling process. Perhaps we devise a strategy where we will stop whenever
we have accumulated certain number of coins, or that we stop whenever we have lost certain number of
coins. In both cases, our strategy of stopping at a certain turn no more than, say the n-th turn, requires
information we’ve gained from the n-th turn and beyond previously. This can be defined mathematically
as a stopping time.

Definition 2.7 (Stopping time). Suppose that (Ft)t∈N is a filtration on the probability space (Ω,F,P)
and τ a random variable which takes value on the nonnegative integers. The random variable τ is called
a stopping time if

{τ ≤ n} ∈ Fn

It turns out that no matter what stopping strategy we are using, as long as our original gambling process
is a martingale, we will still be expected to gain no additional coins, that is, our stopped process is also
martingale. First let us consider the discrete-time ones.

Theorem 2.3. If (Xn)∞n=0 is a martingale and τ is a stopping-time, both w.r.t filtration (Fn)∞n=0, then
(Xn∧τ )∞n=0 is also a martingale.
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PROOF. This can be seen on (Steele, 2001).

Now, a stochastic process may not be a martingale, but the stopped process might be one. Then we may
be interested to approximate this process by some sort of the stopped version. If we can find a sequence
of stopping time that diverges to ∞ such that if we stop our original process with any stopping time in
the sequence we obtain a martingale, then we call this process a local martingale.

Definition 2.8. Let X = (Xt)t∈I be a process adapted to the filtration (Ft)t∈I . If there exists a
nondecreasing sequence of stopping times (τn)n∈N w.r.t filtration (Fn)n∈N such that P (limn→∞ τn) = 1
and the stopped process (Xt∧τn)t∈I is a martingale for every n, then X is a local martingale.
Such nondecreasing sequence of stopping times is called a localizing sequence.

Now let us return for a moment to the Brownian martingale (Bt)t≥0. From Jensen’s inequality for
conditional expectation, we have for 0 ≤ s < t <∞,

X2
s = E [Xt|Fs]2 ≤ E

[
X2
t |Fs

]
(7)

Then (X2
t )t≥0 is called a submartingale, that is, the conditional expectation is greater than the present

value. We also have that the process is nonnegative, continuous, and E
[
X2
s

]
= s <∞ (square-integrable).

Consequently, we have the unique Doob-Meyer decomposition

X2
t = Mt +At (8)

where M is a right-continuous martingale and A is a nondecreasing process with initial value A0 = 0. It
turns out Mt = X2

t − t and At = t as (X2
t − t)t≥0 is a continuous martingale.

It turns out that this decomposition generalizes to other right-continuous and square-integrable sub-
martingale (with different M and A of course).

Theorem 2.4. If a martingale (Xt)t≥0 is right-continuous and square-integrable, there exists a unique
Doob-Meyer decomposition

X2
t = Mt +At (9)

where (Mt)t≥0 is a right-continuous martingale and (At)t≥0 is a nondecreasing process where A0 = 0.

PROOF. The proof is quite long. It can be seen on (Karatzas & Shreve, 1991).

Then we can define a quadratic-variation of (Xt)t≥0, which is the ”limit” of the discrete quadratic-variation
n∑
t=0

(Xti+1 −Xti)
2 where 0 = t0 < t1 < ... < tn < tn+1 = t is a partition of [0, t].

Definition 2.9. Let (Xt)t≥0 be a right-continuous, square integrable martingale. For fixed 0 ≤ t < ∞,
let 0 = t0 < t1 < ... < tn < tn+1 = t be a partition of [0, t] and Π = max0≤i≤n ti+1 − ti be the mesh
of the partition. The quadratic variation of X at time t, 〈X〉t, is defined as the limit in probability to
n∑
t=0

(Xti+1 −Xti)
2 as Π→ 0, that is

n∑
t=0

(Xti+1 −Xti)
2 P−→ 〈X〉t as Π→ 0 (10)
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It turns out that this quadratic variation equals to the A part in the Doob-Meyer decomposition in (9).

〈X〉t = At (11)

This is due to the fact that M is a martingale, so the increments over two non-overlapping intervals are
uncorrelated (using the conditional expectation properties), so

E
[
(Xt −X0)2

]
= E

( n∑
i=0

Xti+1 −Xti

)2
 = E

[
n∑
t=0

(Xti+1 −Xti)
2

]
(12)

But E [XtX0] = E [E [XtX0|F0]] = E
[
X2

0

]
, so

E
[
(Xt −X0)2

]
= E

[
X2
t −X2

0

]
= E [Mt +At −M0 −A0]

= E [At]

(13)

Now, using stopping time to bound the process X in [0, t], we obtain that the variance of the discrete
quadratic-variation converges to 0 (Karatzas & Shreve, 1991). Thus, using Chebyshev’s inequality, we
obtain the convergence in probability.

2.3 Itô’s Integral

Now, let X = (Xt)t≥0 be a right-continuous, square-integrable martingale. We may interpret this X as
the price of certain asset (e.g. stock). Let 0 = t0 < t1... < tn < tn+1 = t be a partition of [0, t]. Suppose
we may determine the number of that asset we hold at each time-interval [ti, ti+1). Naturally, we may
only determine it using past informations, not future ones. We may write the number of asset as

A(s) =

n∑
i=0

Ati1[ti,ti+1)∩[0,s] (14)

where Ati is Fti-measurable and square-integrable.

As an example, we hold A0 assets at time [0, t1). Then at time t1, we update our holdings to At1 using
past informations and keep it until time t2. If At1 > A0, we buy At1 − A0 assets at time t1, and if
At1 < A0, we sell A0 −At1 assets. Then our gains equal to

(At1 −A0)(Xt2 −Xt1) +A0(Xt2 −X0) = A0(Xt1 −X0) +At1(Xt2 −Xt1) (15)

We may generalize this gain at any time s as

I(A)(s) =

k∑
i=0

Ati(Xti+1 −Xti) +Atk(Xs −Xtk) (16)

where k is the unique integer satisfying tk ≤ s < tk+1.
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The equation (16) is called the Ito integral of simple process (14). It is also called a martingale transform
of X because the process (A′ti)

n
i=1 = (Ati−1)ni=1 is predictable w.r.t filtration (Fti−1)ni=1 i.e. A′ti is Fti−1-

measurable. From (Steele, 2001), if ‖A′ti‖∞ < ∞, then the martingale transform is also a martingale &
right-continuous with respect to time. By approximating A′tis by an L∞ random variables using stopping
times, we also obtain the Itô integral in (16) is also a right-continuous martingale.

Now, we denote the collection of such adapted simple processes (or Borel-measurable real-valued functions
with domain in sample space Ω and time [0, T ]) as in (14) as H2

0,X . It turns out that this H2
0,X space is

dense in H2
X , which is the space of all functions (or processes) f satisfying

E
[∫ T

0
|f(·, s)|2 d 〈X〉s

]
=

∫
[0,T ]×Ω

|f(ω, s)|2 d 〈X〉s dP <∞ (17)

equipped with the same norm as the equation above. We may also denote H2
X = L2([0, T ]×Ω, 〈M〉 × P)

which is the space of square-integrable function in [0, T ]× Ω equipped with measure 〈M〉 × P.

Thus we may define the Itô integral of f ∈ H2
0,X from t = 0 to T as the limit of the Itô integral of the

approximating simple processes.

I(f)(T ) = lim
n→∞
L2(Ω)

I(fn)(T ), fn
H2

X−−→ f (18)

To expand this Itô integral on fixed interval [0, T ] to any interval [0, t] ⊆ [0, T ], we use the following
theorem.

Theorem 2.5. Let X = (Xt)0≤t≤T be a square-integrable martingale and f ∈ H2
X . Then there exists a

(Ft)0≤t≤T -adapted continuous martingale Y = (Yt)0≤t≤T such that

P (Yt = I(f)(t)) = 1 ∀t ∈ [0, T ] (19)

Let us denote I(f)(t) = It(f) for f ∈ H2
X . Then this Itô integral satisfies these properties:

(i) I0(f) = 0 a.s.

(ii) (Martingale property) E [It(f)|Fs] = Is(f) for 0 ≤ s < t <∞ a.s.

(iii) (Itô isometry) E
[
It(f)2

]
= E

[∫ t

0
f(·, u)2 d 〈X〉u

]
(iv) (Conditional Itô isometry) E

[
(It(f)− Is(f))2|Fs

]
= E

[∫ t

s
f(·, u)2 d 〈X〉u |Fs

]
for 0 ≤ s < t < ∞

a.s.

(v) (Linearity) I(αf + βg) = αI(f) + βI(g) for f, g ∈ H2
X

2.4 Itô’s Formula

From ordinary calculus, if we have a differentiable path yt and a differentiable function F , then we have
the Fundamental Theorem of Calculus

F (yt)− F (0) =

∫ t

0
F ′(ys) dys (20)
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where the last integral may be interpreted as the Riemann-Stiltjes (or Lebesgue-Stiltjes) type. Alterna-
tively, we may just substitute dys = y′s ds.

Unfortunately, a stochastic process X = (Xt)o≤t≤T might not be differentiable for a.s. every realization.
Thus, we might need to look at this integral as the Itô type.

Consider a process X = (Xt)t≥0 of the form

Xt = X0 +Mt +At (21)

where (Mt)t≥0 is a local continuous martingale with M0 = 0 and A = (At)t≥0 is a process with bounded
variation.

As we can see, this looks like a generalization of the Doob-Meyer decomposition. This type of process is
called a semimartingale.

Definition 2.10 (Continuous Semimartingale). A continuous semimartingale X = (Xt)t is an adapted
process which has decomposition as in (21) where (Mt)t≥0 is a local continuous martingale with M0 = 0
and A = (At)t≥0 is a process with bounded variation or equivalently a difference of two continuous,
nondecreasing processes

A = A+ −A−, A±0 = 0

We may also see that 〈X〉t = 〈M〉t as the quadratic variation of a monotone process is always 0.

We may define a generalised Itô integral for the semimartingale (21) as

∫ t

0
f(·, s) dXs =

∫ t

0
f(·, s) dMs +

∫ t

0
f(·, s) dAs (22)

where the first integral on the righthand-side is the Itô integral (the local martingale is handled by a
localizing sequence to turn it into a martingale), while the second integral is the Lebesgue-Stiltjes type
(as the process A has finite variation a.s).

Theorem 2.6. Suppose a process Y is constructed as

Y (ω, t) =

∫ t

0
a(ω, s) dMs +

∫ t

0
b(ω, s) dAs (23)

where M and A is obtained from the decomposition of continuous semimartingale (21), and

P
(∫ t

0
|a(·, s)|2 d 〈M〉s <∞

)
= 1 ∀ t ∈ [0, T ] (24)

P
(∫ t

0
|b(·, s)| d 〈A〉s <∞

)
= 1 ∀ t ∈ [0, T ] (25)

Then

〈Y 〉t =

∫ t

0
|a(·, s)|2 d 〈M〉s ∀0 ≤ t ≤ T (26)

Theorem 2.6 basically tells us that the quadratic variation of a process only comes from the stochastic
(Itô) integral part. The Lebesgue-Stiltjes integral has quadratic variation 0 which follows directly from
triangle inequality and the requirement (25).

To calculate the quadratic variation of the Itô integral part, we may compute the expectation
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dj =

(∫ tj

tj−1

a(·, s) dMs

)2

−
∫ tj

tj−1

|a(·, s)|2 d 〈M〉s (27)

using conditional Itô’s isometry and the law of total expectations, which will gives us 0. Adding them all
for all time-partitions, we get the expectation of the discrete quadratic-variation equals the expectation
of the right-hand side of (26).

To calculate the variance of

 n∑
j=1

dj

, again we use the tower and total expectation property to obtain

E [djdk] = 0 for j 6= k. Using AM-QM and Cauchy-Schwarz inequality, we can make the variance
arbitrarily small by taking a partition with small enough mesh.

Now we may describe the Itô’s formula.

Theorem 2.7 (Itô’s formula). Suppose X = (Xt)0≤t≤T is a continuous semimartingale and F : R → R
is twice continuously-differentiable. Then for all t ∈ [0, T ],

F (Xt)− F (0) =

∫ t

0
F ′(Xs) dXs +

1

2

∫ t

0
F ′′(Xs) d 〈X〉s (28)

The proof of the Itô’s formula usually starts by assuming F has a compact support, so it has bounded
F , F ′, and F ′′. The F difference on each time partition is then written in its 2nd order Taylor series plus
the error term

|r(Xti−1 , Xti)| ≤
1

2
|Xti−1 −Xti |2 sup

u∈[Xti−1∧Xti ,Xti−1∨Xti ]
|F ′′(u)− F ′′(Xti−1)| (29)

Then by decomposing X as in (21),

F (Xt)− F (X0) =
n∑
i=1

F ′(Xti−1)(Xti −Xti−1) +
1

2

n∑
i=1

F ′′(Xti−1)(Xti −Xti−1)2 +

n∑
i=1

r(Xti−1 , Xti) (30)

=

n∑
i=1

F ′(Xti−1)(Mti −Mti−1) +

n∑
i=1

F ′(Xti−1)(Ati −Ati−1)

+
1

2

n∑
i=1

F ′′(Xti−1)(Mti −Mti−1)2 +
n∑
i=1

F ′′(Xti−1)(Mti −Mti−1)(Ati −Ati−1)

+
1

2

n∑
i=1

F ′′(Xti−1)(Ati −Ati−1)2 +

n∑
i=1

r(Xti−1 , Xti) (31)

The first sum is the Itô’s integral of the approximating simple process, and by bounded convergence
theorem, it converges to the Itô integral of F ′. The second one converges to the Lebesgue-Stiltjes integral
as A has finite variation. The fourth one converges to 0 because F ′′ is bounded, A has finite variation, and
M is continuous on the closed interval [0, T ] that we may find a small enough mesh such that Mti−Mti−1

is arbitrarily small. The fifth one also converges to 0 using similar argument as the fourth one. The sixth
sum also converges to 0 because F ′′ is uniformly continuous, so we may choose a space-mesh δ1 such that
|F (x) − F (y)| < ε for |x − y| < δ1, time-mesh δ2 := δ2(ω, δ1) such that |Xs − Xt| < δ1 for s, t ∈ [0, T ],
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|s− t| < δ2, and choosing our time-partition with mesh < δ2. Then this sum is bounded by ε times the
discrete-quadratic variation, converging to 0 for arbitrarily small ε.

For the third sum,

n∑
i=1

F ′′(Xti−1)(Mti −Mti−1)2 =
n∑
i=1

F ′′(Xti−1)
[
(Mti −Mti−1)2 −

(
〈M〉ti − 〈M〉ti−1

) ]
+

n∑
i=1

F ′′(Xti−1)
(
〈M〉ti − 〈M〉ti−1

) (32)

Let us assume first M is a martingale. Then the second integral on (32) converges to the Lebesgue-Stiltjes
integral w.r.t 〈M〉 as 〈M〉 is a non-decreasing process with 〈M〉0 = 0

Observe that M2 − 〈M〉 is also a martingale. Using the fact that E
[
Mti−1Mti |Fti−1

]
= 0, the con-

ditional expectation (w.r.t Fti−1) of each F ′′(Xti−1)
[
(Mti − Mti−1)2 −

(
〈M〉ti − 〈M〉ti−1

) ]
equals to

2F ′′(Xti−1) 〈M〉ti−1
. Consequently, the unconditioned expectation is 2 〈M〉0 = 0, and the expectation

of the first sum (32) equals 0.

Furthermore, using the martingale property such as the tower property, we may see that the variance of
the first sum on (32) converges to 0, so the first sum converges to 0 in probability.

For more general twice continuously-differentiable F , we multiply F by some twice continuously-differentiable
bell function bM such that bM (x) = 1 for x ∈ [−M,M ] and 0 ∈ [−M − 1,M + 1]. Itô’s formula then
applies for Fbm. Using stopping time argument, it should also applies to F .

From Itô’s formula, we may obtain the following Itô’s rule.

Theorem 2.8 (Itô’s rule). Suppose X = (Xt)0≤t≤T is a continuous semimartingale and F : [0, T ] ×
R → R is a function that is continuously-differentiable in the first (time) entry and twice continuously-
differentiable in the second (space) entry. Then for all t ∈ [0, T ],

F (t,Xt)− F (0, 0) =

∫ t

0
∂sF (s,Xs) ds+

∫ t

0
∂xF (s,Xs) dXs +

1

2

∫ t

0
∂xxF (s,Xs) d 〈X〉s (33)

3 Stochastic Differential Equations

Now, consider a Brownian motion (Bt)t≥0 and a process (Xt)t≥0 which satisfies

Xt = X0 +

∫ t

0
µ(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs, 0 ≤ t ≤ T (34)

for all t ≥ 0, with µ and σ having certain nice properties. To shorten the notation, we may write equation
(34) as

dXt = µ(s,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T (35)

The equation (35) really is an integral equation (34), but it gives us a nice interpretation: the change
in Xt is driven by the deterministic change µ(s,Xt)dt with randomness σ(t,Xt)dBt. The deterministic
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change µ (without the dt part) is called the drift term, and the random change σ (without dBt) is called
the diffusion term.

Now we need both integrals on (34) to make sense outcome-wise (ω), so we need µ to be integrable in
the ordinary Lebesgue sense and σ to be Itô-integrable, so we restrict ourselves to standard processes as
discussed previously.

In the theory of ordinary differential equations (ODEs), we only need µ to be locally-Lipschitz and
bounded by linear growth to ensure the existence and uniqueness of the (local) solution. For the stochastic
ones, we can prove uniqueness using the same requirements. But to prove existence for the stochastic
ones, we need a stronger requirements for µ and σ, that is, in addition to be bounded linear growth, they
are globally-Lipschitz. This is because the Brownian motion can progress arbitrarily large depending on
the outcome ω, and thus we cannot obtain a constant bound across all ω.

Theorem 3.1 (Uniqueness). Let µ and σ both be R≥0×R→ R functions with the first entry is the time
and the second entry is the space. Assume that µ and σ satisfy the local Lipschitz entry, that is

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ KT,M |x− y| ∀t ∈ [0, T ], x, y ∈ [−M,M ] (36)

Assume there is a process (Xt)0≤t≤T which satisfies (34) with initial condition X0 ∈ L2(Ω). If there is
another (Yt)0≤t≤T also satisfying (34) with the same initial condition, then Xt and Yt is indistinguishable,
that is

P (Xt = Yt for all t ∈ [0, T ]) = 1 (37)

PROOF. Let us assume there are 2 solutions, Xt and Yt, that satisfy SDE (34).
Define τn = inf {t ≥ 0 : |Xt| ≥ n or |Yt| ≥ n or t ≥ T}. Clearly (τn)∞n=0 is a localizing sequence for both
Xt and Yt. Also, t∧τn → t a.s because X and Y are continuous a.s, thus are bounded on the time interval
[0, T ] a.s. Then, by triangle inequality for the 2-moment norm, Itô isometry, Cauchy-Schwarz inequality,
and the local Lipschitz property consecutively,

(
E
[
|Xt∧τn − Yt∧τn |2

]) 1
2 ≤

(
E

[(∫ t∧τn

0
µ(s,Xs)− µ(s, Ys)ds

)2
]) 1

2

+

(
E

[(∫ t∧τn

0
σ(s,Xs)− σ(s, Ys)dBs

)2
]) 1

2

=

(
E

[(∫ t∧τn

0
µ(s,Xs)− µ(s, Ys)ds

)2
]) 1

2

+

(
E
[∫ t∧τn

0
|σ(s,Xs)− σ(s, Ys)|2 ds

]) 1
2

≤ t
1
2

(
E
[∫ t∧τn

0
|µ(s,Xs)− µ(s, Ys)|2 ds

]) 1
2

+

(
E
[∫ t∧τn

0
|σ(s,Xs)− σ(s, Ys)|2 ds

]) 1
2

≤ T
1
2KT,n

(
E
[∫ t

0
|Xs∧τn − Ys∧τn |

2 ds

]) 1
2

+KT,n

(
E
[∫ t

0
|Xs∧τn − Ys∧τn |

2 ds

]) 1
2

= (T
1
2 + 1)KT,n

(∫ t

0
E
[
|Xs∧τn − Ys∧τn |2

]) 1
2

= 0 + (T
1
2 + 1)KT,n

(∫ t

0
E
[
|Xs∧τn − Ys∧τn |2

]) 1
2

(38)

Using Gronwall inequality,
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(
E
[
|Xt∧τn − Yt∧τn |2

]) 1
2 ≤ (T

1
2 + 1)KT,n

∫ t

0
0 · exp

(
(T

1
2 + 1)2K2

T,n(t− s)
)
ds

= 0

Thus,
(
E
[
|Xt∧τn − Yt∧τn |2

]) 1
2 = 0, implying for each t ∈ [0, T ], Xt∧τn = Yt∧τn a.s. Then Xt∧τn = Yt∧τn

for all t ∈ Q∩ [0, T ] a.s. By continuity, Xt∧τn and Yt∧τn are indistinguishable. Taking n→∞, Xt and Yt
are also indistinguishable.

To ensure existence of solution, we are assuming additional properties satisfied by the drift and diffusion
term, that is, they are now both globally Lipschitz and bounded by linear growth. We may the drift
locally Lipschitz, however we have to add additional properties to the diffusion as will be described next
on Wong-Zakai approximations using Lamperti transformation.

We may adopt the use of Picard’s iteration to construct the solution of (34). Let X
(0)
t = X0 = ξ and

define an iteration

X
(n)
t = ξ +

∫ t

0
µ(s,X(n−1)

s )ds+

∫ t

0
σ(s,X(n−1)

s )dBs (39)

It turns out we may bound the expectation of these iterations as follows.

Lemma 3.2. Let us fix a Brownian motion (Bt)t≥0. Let µ and σ both be R≥0 × R → R functions with
the first entry is the time and the second entry is the space. Assume that µ and σ satisfy these properties:

1. |µ(t, x)−µ(t, y)|+ |σ(t, x)−σ(t, y)| ≤ K|x−y| ∀t ∈ [0, T ], x, y ∈ R (globally Lipschitz on the space
entry)

2. |µ(t, x)|2 + |σ(t, x)|2 ≤ K(1 + |x|2) ∀t ∈ [0, T ], x ∈ R (linear growth boundedness)

Assume that the initial condition X0 = ξ is of finite 2-moment.Then there exists a constant C depending
only on K and T such that the sequence of processes obtained from Picard’s iteration in (39) can be
bounded as

E
[
|X(n)

t |2
]
≤ C(1 + E

[
|ξ|2
]
) exp(Ct) ∀t ∈ [0, T ], n ∈ N (40)

PROOF. We may compute, using triangle inequality for the 2-norm, Cauchy-Schwarz inequality, Itô
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isometry, the linear growth boundedness, and AM-QM inequality consecutively,

(
E
[
|X(n+1)

t |2
]) 1

2 ≤
(
E
[
|ξ|2
]) 1

2 +

(
E

[∣∣∣∣∫ t

0
µ(s,X(n)

s ) ds

∣∣∣∣2
]) 1

2

+

(
E

[∣∣∣∣∫ t

0
σ(s,X(n)

s ) dBs

∣∣∣∣2
]) 1

2

≤
(
E
[
|ξ|2
]) 1

2
+ t

1
2

(
E
[∫ t

0
|µ(s,X(n)

s )|2 ds
]) 1

2

+

(
E
[∫ t

0
|σ(s,X(n)

s )|2 ds
]) 1

2

≤
(
E
[
|ξ|2
]) 1

2
+Kt

1
2

{
t+

(
E
[∫ t

0
|X(n)

s |2 ds
])} 1

2

+K

{
t+

(
E
[∫ t

0
|X(n)

s |2 ds
])} 1

2

≤
(
E
[
|ξ|2
]) 1

2
+

(
2K2t

{
t+

(
E
[∫ t

0
|X(n)

s |2 ds
])}

+ 2K2

{
t+

(
E
[∫ t

0
|X(n)

s |2 ds
])}) 1

2

=
(
E
[
|ξ|2
]) 1

2
+

(
2
(
K2t+K2t2

)
+ 2

(
K2t+K2

) ∫ t

0
E
[
|X(n)

s |2
]
ds

) 1
2

≤ C
1
2
1

(
E
[
|ξ|2
]) 1

2
+ C

1
2
1

(
1 +

∫ t

0
E
[
|X(n)

s |2
]
ds

) 1
2

where C1 = max
{

2
(
K2T +K2T 2

)
, 2
(
K2T +K2

)
, 1
}

. We apply QM-AM inequality once again, getting

(
E
[
|X(n+1)

t |2
]) 1

2 ≤
(

2C1E
[
|ξ|2
]

+ 2C1

(
1 +

∫ t

0
E
[
|X(n)

s |2
]
ds1

)) 1
2

(41)

We now have an iterable inequality. Iterating this inequality backward to E
[
|X(0)

s |2
]

= E
[
|ξ|2
]
, we may

obtain

(
E
[
|X(n+1)

t |2
]) 1

2 ≤

(2C1E
[
|ξ|2
]

+ 2C1)

 n∑
j=0

2jCj1t
j

j!

+ 2n+1Cn+1
1

∫ t

0

∫ s1

0
...

∫ sn

0
E
[
|ξ|2
]
dsn+1...ds2ds1

 1
2

≤
[
(2C1E

[
|ξ|2
]

+ 2C1) exp(2C1t)
] 1
2 (because 2C1 ≥ 2)

=
[
C2(1 + E

[
|ξ|2
]
) exp(C2t)

] 1
2

where C2 = 2C1.

Now we may begin proving the solution existence.

Theorem 3.3 (Existence). Let µ and σ both be R≥0 × R → R functions with the first entry is the time
and the second entry is the space. Assume that µ and σ satisfy these properties:

1. |µ(t, x)−µ(t, y)|+ |σ(t, x)−σ(t, y)| ≤ K|x−y| ∀t ∈ [0, T ], x, y ∈ R (globally Lipschitz on the space
entry)

2. |µ(t, x)|2 + |σ(t, x)|2 ≤ K(1 + |x|2) ∀t ∈ [0, T ], x ∈ R (linear growth boundedness)

Let us fix a Brownian motion (Bt)t≥0. Then there is a unique solution (Xt)t≥0 to the SDE (34) with
initial condition X0 = ξ of finite 2-moment. Furthermore, Xt has finite 2-moment for any t ∈ [0, T ] and
that there exists a constant C, depending only on K and T such that

E
[
|Xt|2

]
≤ C(1 + E

[
|ξ|2
]
) exp(Ct) ∀t ∈ [0, T ] (42)
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PROOF. Let us follow a Picard’s iteration as we have described before. Fix t ∈ [0, t].

Now we may denote

X
(n+1)
t −X(n)

t = D
(n)
t +M

(n)
t (43)

where

D
(n)
t =

∫ t

0
µ(s,X(n)

s )− µ(s,X(n−1)
s ) ds

M
(n)
t =

∫ t

0
σ(s,X(n)

s )− σ(s,X(n−1)
s ) dBs

From AM-QM inequality,

|X(n+1)
s −X(n)

s |2 ≤ 2(D(n)
s

2
+M (n)

s

2
) (44)

Observe that using the bound on lemma 3.2 and the global Lipschitz condition on µ, we can obtain

E
[∫ T

0
|σ(s,X(n)

s )− σ(s,X(n−1)
s )|2 ds

]
=

∫ T

0
E
[
|σ(s,X(n)

s )− σ(s,X(n−1)
s )|2

]
ds

≤
∫ T

0
KE

[
|X(n)

s −X(n−1)
s |2

]
ds

≤
∫ T

0
4KC2(1 + E

[
|ξ|2
]
) exp(C2t) ds

<∞

Then σ(s,X
(n)
s ) − σ(s,X

(n−1)
s ) is an H2 process, implying that (M

(n)
s )0≤s≤T is a martingale. Thus we

may use Doob’s Lp inequality and Itô isometry consecutively as follows.

E
[

sup
0≤s≤t

|M (n)
s |2

]
≤ 4E

[
|M (n)

t |2
]

= 4

∫ t

0
E
[∣∣∣σ(s,X(n)

s )− σ(s,X(n−1)
s )

∣∣∣2] ds
≤ 4K2

∫ t

0
E
[
|X(n)

s −X(n−1)
s |2

]
ds (45)

Using Cauchy-Schwarz inequality, we may obtain

|D(n)
s |2 ≤ K2s

∫ s

0

∣∣∣X(n)
u −X(n−1)

u

∣∣∣2 du
⇒ sup

0≤s≤t
|D(n)

s |2 ≤ K2T

∫ t

0

∣∣∣X(n)
s −X(n−1)

s

∣∣∣2 ds (46)

Using equation (43), triangle inequality and the inequalities (44), (45), (46),
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E
[

sup
0≤s≤t

∣∣∣X(n+1)
s −X(n)

s

∣∣∣2] ≤ (16K2 + 4K2T )

∫ t

0
E
[∣∣∣X(n)

s −X(n−1)
s

∣∣∣2] ds
≤ L

∫ t

0
E
[

sup
0≤u≤s

∣∣∣X(n)
u −X(n−1)

u

∣∣∣2] ds (47)

where L = 16K2 + 4K2T . Iterating this inequality, we obtain

E
[

sup
0≤s≤t

∣∣∣X(n+1)
s −X(n)

s

∣∣∣2] ≤ L∫ t

0

Ln−1sn−1

(n− 1)!
E
[∣∣∣X(1)

s −X(0)
s

∣∣∣2] ds
≤ L

∫ t

0

Ln−1sn−1

(n− 1)!
sup

0≤s≤T
E
[∣∣∣X(1)

s −X(0)
s

∣∣∣2] ds
=
Lntn

n!
sup

0≤s≤T
E
[∣∣∣X(1)

s −X(0)
s

∣∣∣2]
= C∗

Lntn

n!
∞ (48)

where C∗ = sup
0≤s≤T

E
[∣∣∣X(1)

s −X(0)
s

∣∣∣2] <∞ because of lemma 3.2.

Using Chebyshev inequality,

P

(
sup

0≤s≤T

∣∣∣X(n+1)
s −X(n)

s

∣∣∣ > 1

2n+1

)
≤ 4C∗

4nLntn

n!
(49)

If we sum the right-hand part of inequality (49) across all n, the summation is absolutely convergent.
Thus, using Borel-Cantelli lemma, for each ω in a set Ω∗ ⊆ Ω of probability 1, there exists N(ω) ∈ N
such that

sup
0≤s≤T

∣∣∣X(n+1)
s (ω)−X(n)

s (ω)
∣∣∣ ≤ 1

2n+1
∀n ≥ N(ω)

⇒ sup
0≤s≤T

∣∣∣X(n+k)
s (ω)−X(n)

s (ω)
∣∣∣ ≤ 1

2n
∀n ≥ N(ω) (50)

Then X
(n)
s converges uniformly for each s ∈ [0, T ] almost surely. Denote the limit as Xs. Because

of uniform convergence and the almost-sure continuity of each X
(n)
s , it should follow that Xs is also

continuous almost-surely.

From lemma 3.2 and Fatou’s lemma,

E
[
|Xt|2

]
≤ lim

n→∞
E
[
|X(n)

t |2
]

≤ C(1 + E
[
|ξ|2
]
) exp(Ct) (51)
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Then the process (Xt)t≥0 is also an H2 process. Thus, by Itô isometry

E

[∣∣∣∣∫ t

0
σ(s,X(n)

s )− σ(s,Xs) dBs

∣∣∣∣2
]
≤ K2E

[∣∣∣∣∫ t

0
|Xs −X(n)

s | dBs
∣∣∣∣2
]

= K2

∫ t

0
E
[
|Xs −X(n)

s |2
]
ds (52)

BecauseX
(n)
s converges uniformly toXs on [0, T ] almost surely and the bound on E

[
|X(n)

s |2
]

and E
[
|Xs|2

]
in lemma 3.2 and inequality (51), by dominated convergence theorem, the right-hand side of (52) converges
to 0.

Thus,

∫ t

0
σ(s,X(n)

s ) dBs
L2(Ω)−−−−→

∫ t

0
σ(s,Xs)dBs (53)

Similarly,

∫ t

0
µ(s,X(n)

s ) ds
L2(Ω)−−−−→

∫ t

0
µ(s,Xs) ds (54)

Because of this L2(Ω) convergence, there is a subsequence (X
(nk)
t )∞k=1 such that the convergence in (53)

and (54) becomes almost-sure convergence. But because X
(n)
t converges almost surely to Xt, it should

follow that

Xt = X0 +

∫ t

0
µ(s,X(n)

s ) ds+

∫ t

0
σ(s,X(n)

s ) dBs a.s. (55)

Because Q is countable, there exists a set Ω1 ∈ F of probability 1 such that

Xt = X0 +

∫ t

0
µ(s,X(n)

s ) ds+

∫ t

0
σ(s,X(n)

s ) dBs ∀t ∈ [0, T ] ∩Q a.s. (56)

Because integration (ordinary Lebesgue or Itô) is continuous, equation (56) should also be satisfied for
all t ∈ [0, T ] almost surely.

4 Some Methods of Solving SDEs/Solution Construction

4.1 Doss-Sussman Method

Now let us consider a class of one-dimensional stochastic differential equations of the form

Xt = ξ +

∫ t

0

(
µ(Xs) +

1

2
σ(Xs)σ

′(Xs)

)
ds+

∫ t

0
σ(Xs) dBs (57)
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Now, what is so special about this form of SDE? It turns out that we may ”turn” this SDE into a
deterministic ordinary differential equations. By turning SDE into ODE, we may obtain the solution Xt

in a form of deterministic function with random inputs (note that generally speaking, the solution Xt is
a random function, not just a deterministic function with random inputs). From Mean Value Theorem,

Computationally, when we are executing a (computational) methods of solving for Xt, we need to be sure
that the method works consistently for all outcome ω (almost surely at least), not just the outcome we
observed. But if Xt is in a form of deterministic function with random inputs, we do not need to simulate
all possible outcome ω. We can be sure that indeed our computations are consistent.

Now, we assume some nice properties for the initial condition ξ, the diffusion σ, and µ.

Assumption 4.1. (i) The initial condition ξ is square-integrable i.e. a L2(Ω,F,P) random variable.

(ii) µ is globally Lipschitz-continuous, i.e. there exists a constant L such that

|µ(x)− µ(y)| ≤ L|x− y| ∀x, y ∈ R (58)

(iii) σ has bounded first and second derivatives, i.e. there exists a constant A such that

|σ′(x)| ≤ A and |σ′′(x)| ≤ a ∀x ∈ R (59)

Because σ has bounded first derivatives, it is also globally Lipschitz-continuous, so from the theory of
ODEs, there exists (uniquely and globally) a function u(x, y) which solves the ODE with initial condition

∂u

∂x
= σ(u), u(0, y) = y (60)

Then we have

∂2u

∂x2
= σ(u)σ′(u),

∂2u

∂x∂y
= σ′(u)

∂u

∂y
,

∂

∂y
u(0, y) = 1 (61)

Using standard calculus, we may obtain

∂

∂y
u(x, y) = exp

(∫ x

0
σ′(u(z, y))dz

)
:=

1

ρ(x, y)
(62)

Now, from (58), we may obtain exp(−A|x|) ≤ ρ(x, y) ≤ exp(A|x|) for all x and y, implying
∂

∂y
u(x, y) is

bounded by the same lower and upper bound.

|u(x, y1)− u(x, y2)| =
∣∣∣∣ ∂∂yu(x, y∗)

∣∣∣∣ |y1 − y2| ≤ exp(A|x|)||y1 − y2| (63)

Thus, for fixed x, we have µ(u(x, y)) is Lipschitz-continuous in y because

|µ(u(x, y1))− µ(u(x, y2)) ≤ L exp(A|x|)||y1 − y2| (64)

Furthermore, from (64). |µ(u(x, y))| ≤ L exp(A|x|)||y|+|µ(u(x, 0))|, implying µ(u(x, y)) has linear growth
in y for fixed x.
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Then, using the inequality | exp(z1)− exp(z2)| ≤ max {exp(z1), exp(z2)} |z1 − z2|, we have

|ρ(x, y1)− ρ(x, y2)| ≤ max {ρ(x, y1), ρ(x, y2)}
∫ |x|

0

∣∣σ′(u(z, y1))− σ′(u(z, y2))
∣∣ dz

≤ exp(A|x|)
∫ |x|

0
A |u(z, y1)− u(z, y2)| dz

≤ max {ρ(x, y1), ρ(x, y2)}
∫ |x|

0
A exp(A|z|)||y1 − y2| dz

≤ exp(A|x|)
∫ |x|

0
A exp(A|x|)|y1 − y2| dz

= A|x| exp(2A|x|)|y1 − y2| (65)

implying that for fixed x, ρ(x, y) is Lipschitz-continuous in y.

Define f(x, y) := ρ(x, y)µ(u(x, y)). Then for x, y1, y2 ∈ [−K,K], using the linear growth of µ,

|f(x, y1)− f(x, y2)| = |ρ(x, y1)µ(u(x, y1))− ρ(x, y2)µ(u(x, y2))|
≤ |ρ(x, y1)µ(u(x, y1))− ρ(x, y1)µ(u(x, y2))|+ |ρ(x, y1)µ(u(x, y2))− ρ(x, y2)µ(u(x, y2))|

≤ exp(A|x|) |µ(u(x, y1))− µ(u(x, y2))|+
[
L exp(A|x|)||y2|+ |µ(u(x, 0))|

]
|ρ(x, y1)− ρ(x, y2)|

(66)

Because u has continuous partial derivatives with respect to both x and y, u(x, 0) is bounded for x ∈
[−K,K], implying that µ(u(x, y)) is also bounded on [−K,K]. Then using (64) and (65), we may find a
constant LK such that

|f(x, y1)− f(x, y2)| ≤ Lk|y1 − y2| ∀x, y1, y2 ∈ [−K,K] (67)

Furthermore, from the linear growth of µ(u(x, y)) and the boundedness of ρ(x, y),

|f(x, y)| ≤ exp(A|x|)
[
L exp(A|x|)||y|+ |µ(u(x, 0))|

]
≤ K1k +K2k|y| ∀|x| ≤ k, y ∈ R (68)

Because of (67) and (68), for every y0 ∈ R and continuous function x : R≥0 → R, there exists a unique
solution Y ∗(x(t), y0, t) to the ordinary differential equation (in the integral form) such that

Y ∗(x(t), y0, t) = y0 +

∫ t

0
f(x(s), Y ∗(x(s), y0, s)) ds (69)

For every ω ∈ Ω, fix Yt(ω) = Y ∗(Bt(ω), ξ(ω), t). Because Bt is continuous almost surely, then

Yt(ω) = ξ(ω) +

∫ t

0
f(Bs(ω), Ys(ω)) ds (70)

Page 19



2022 FRT ANU

Because f and Yt is continuous (the latter almost surely), it follows that for any T > 0,

∫ T

0
|f(Bs(ω), Ys(ω))| ds <∞ a.s.

Thus, the process (Yt)t≥0 has 0 quadratic variation or 〈Y 〉T = 0 for any T > 0. Furthermore,

Bt ± Yt = B0 ± ξ +

∫ t

0
dBs ±

∫ t

0
f(Bs(ω), Ys(ω)) ds (71)

so 〈B ± Y 〉 = 〈B〉T = T . This implies the quadratic covariaton of W and Y is also 0 because

〈B, Y 〉T =
1

4

[
〈B + Y 〉T − 〈B − Y 〉T

]
=

1

4

[
T − T

]
= 0 (72)

Define Xt(ω) = u(Bt(ω), Yt(ω)). Obviously X0(ω) = u(0, ξ(ω)) = ξ(ω). Then, from Itô’s rule, for every
t > 0,

Xt(ω) = u(B0(ω), Y0(ω)) +

∫ t

0
ux(Bs(ω), Ys(ω)) dBs +

∫ t

0
uy(Bs(ω), Ys(ω)) dYs

+
1

2

∫ t

0
uxx(Bs(ω), Ys(ω)) d 〈B〉s +

∫ t

0
uxy(Bs(ω), Ys(ω)) d 〈W,Y 〉s

+
1

2

∫ t

0
uyy(Bs(ω), Ys(ω)) d 〈Y 〉s

= ξ(ω) +

∫ t

0
σ
(
u(Bs(ω), Ys(ω))

)
dBs +

∫ t

0

1

ρ
(
Bs(ω), Ys(ω)

) f(Bs(ω), Ys(ω)) ds

+
1

2

∫ t

0
σ
(
u(Bs(ω), Ys(ω))

)
σ′
(
u(Bs(ω), Ys(ω))

)
ds+ 0

+ 0

= ξ(ω) +

∫ t

0
σ(Xs(ω)) dBs +

∫ t

0
µ(Xs) ds+

1

2

∫ t

0
σ(Xs(ω))σ′(Xs(ω)) ds a.s. (73)

Because of the countability and density of Q, in addition to the fact that integration is a continuous
operator, the equation (73) holds for any t > 0 almost surely. The process X which satisfies this equation
is unique due to the uniqueness of ODE solution in . If there is another process Y satisfying (73), then
X and Y is indistinguishable.

This result, first developed by Doss and Sussman independently, can be stated as follows.

Theorem 4.1 (Doss-Sussman). Let ξ, µ, and σ satisfy the assumption 4.1. Then the one-dimensional
stochastic differential equation

Xt = ξ +

∫ t

0
µ(Xs) +

1

2
σ(Xs)σ

′(Xs) ds+

∫ t

0
σ(Xs(ω)) dBs (74)
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has a unique solution Xt. Furthermore, Xt can be written as

Xt(ω) = u(Bt(ω), Yt(ω)) (75)

for a suitable continuous deterministic function u : R2 → R and a process Y which solves an ordinary
differential equation, for all ω almost surely.

Example 4.2. Let us consider the SDE

dXt =

(√
1 +X2

t +
1

2
Xt

)
dt+

√
1 +X2

t dBt (76)

Now we may fit this equation into the Doss-Sussman type with µ(x) = σ(x) =
√

1 + x2. After some
calculations, we may see these functions satisfy the assumption 4.1 and that

σ′(x)σ(x) = x

Now, the unique solution to the ODE

∂u

∂x
=
√

1 + u2 u(0, y) = y (77)

is u(x, y) = sinh(x+ sinh−1 y). Thus σ′(u(z, y)) = u(z,y)√
1+u2(z,y)

= sinh(z+sinh−1 y)

cosh(z+sinh−1 y)
and

ρ(x, y) = exp

(
−
∫ x

0

sinh(z + sinh−1 y)

cosh(z + sinh−1 y)
dz

)
= exp

(
− log

(
cosh(z + sinh−1 y)

) ∣∣∣x
0

)
=

cosh(sinh−1 y)

cosh(x+ sinh−1 y)

=

√
1 + y2

cosh(x+ sinh−1 y)

(78)

Next, we obtain f

f(x, y) = ρ(x, y)µ(u(x, y))

=

√
1 + y2

cosh(x+ sinh−1 y)

√
1 + sinh2(x+ sinh−1 y)

=
√

1 + y2

(79)

Then, we solve for Y ∗ as the unique solution to the following ODE.

d

dt
Y ∗(x, y0, t) =

√
1 + (Y ∗)2(x, y0, t), Y ∗(x, y0, 0) = y0

⇒ Y ∗(x, y0, t) = sinh
(
t+ sinh−1 y0

) (80)

Finally, we fix Yt(ω) = sinh
(
t+ sinh−1X0(ω)

)
and

Xt(ω) = sinh
(
Bt(ω) + sinh−1(Yt(ω))

)
= sinh

(
Bt(ω) + sinh−1(sinh

(
t+ sinh−1X0(ω)

)
)
)

= sinh
(
Bt(ω) + t+ sinh−1X0(ω))

) (81)

Using Itô’s rule, we may check that this is indeed the solution to the equation (76).
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4.2 Lamperti Transformation Method for Regime-Switching SDE

The Doss-Sussman method we described may only apply to SDE of the form (57), so we are interested
to see other method to solve other types of SDE.

Other form of SDE is the regime-switching type where the drift and diffusion may change according to
some event. Let (Jt)t≥0 a right-continuous jump process where all realization of each Jt take values from
a common finite set E. Furthermore, we also assume that the number of jumps on any compact interval
is finite almost surely.

Now, consider a one-dimensional equation

dXt = µJt(t,Xt) dt+ σJt(t,Xt) dBt, X0 = x0 ∈ R (82)

First, we need several assumptions to guarantee the existence of unique solution to (82).

Assumption 4.3.

(i) For each ı ∈ E, µi

(a) is locally-Lipschitz continuous with respect to both entries

(b) is bounded by global linear growth with respect to both entries

(ii) For each ı ∈ E, σi

(a) is continuously-differentiable with respect to both entries

(b) is locally-Lipschitz continuous with respect to both entries

(c) is globally-Lipschitz continuous with respect to the second (or space) entry

(d) has locally-Lipschitz continuous (w.r.t both entries) partial derivatives

(e) is positive, bounded, and does not vanish i.e. the infimum is not 0.

(f) has a partial derivative (w.r.t first/time entry) bounded by quadratic growth i.e. there is a
constant K such that

∂1[σi]/σ
2
i ≤ K

Before constructiong the solution, (Nguyen & Peralta, 2021) first assume there exists a unique solution
to (82). From this, the SDE (82) is transformed, using Lamperti transformation, into an SDE with only
unit diffusion and show that this new SDE also has a unique solution. By the injective nature of Lamperti
transform, the reversed direction is obtained if the new SDE also has a unique solution.

Theorem 4.2. Suppose that µi and σi satisfy assumption 4.3. Assume there exists a unique solution to
SDE (82). Define the Lamperti transformation of σi as

hi(t, x) =

∫ x

x0

1

σi(t, y)
dy (83)

Let Lt = hJt(t,Xt). Then the process (Lt)t≥0 satisfies the regime-switching SDE with jumps and unit
diffusion

dLt = µ∗Jt(t, Lt) dt+ dBt +
∑

s≤t; Js 6=Js−

(
hJs
(
s, h−1

Js−
(s, Ls−)

)
− Ls−

)
(84)
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where h−1
i is the inverse of hi : R→ R and

µ∗i (t, `) = ∂1

[
hi
(
t, h−1

i (t, `)
)]

+
µi
(
t, h−1

i (t, `)
)

σi
(
t, h−1

i (t, `)
) − 1

2
∂2

[
hi
(
t, h−1

i (t, `)
)]

(85)

Note: ∂i denotes the partial derivatives with respect to the i-th entry.

PROOF. The proof is quite straightforward. By assumption 4.3, there exists positive constants v and V

such that
1

V
≤ 1

σi(t, y)
≤ 1

v
, making sure that

1

σi(t, y)
is also continuously-differentiable with respect to

both entries. Thus, the Lamperti transformation is strictly monotonically increasing, once continuously-
differentiable in the first (time) entry, and twice continuously-differentiable in the second (space) entry.

We may compute that

∂2

[
hJt(t,Xt)

]
dXt =

1

σJt(t,Xt)

(
µJt(t,Xt) dt+ σJt(t,Xt) dBt

)
=
µJt(t,Xt)

σJt(t,Xt)
dt+ dBt

(86)

Applying Itô’s rule for regime-switching processes, we obtain (Lt)t≥0 satisfies (84). The diffusion coeffi-
cient is transformed into unity because of (86).

For the other way around, if we find a unique solution to the transformed equation in (84), we may
guarantee the unique solution to the original equation (82) is Xt = h−1

Jt
(t, Lt).

Now we turn to construct the solution to (84) using, once again, the theory of ODEs. First, let us consider
the following lemma.

Lemma 4.3. Under assumption 4.3, the constructed function µ∗i in (85) is locally-Lipschitz continuous
and bounded by global linear growth, with respect to both entries.

PROOF. The proof may be found in (Nguyen & Peralta, 2021).

Now, let us construct

Yi,b,r(t) = b+

∫ t

0
µ∗i (r + u, Yi,b,r(u) +Br+u −Br) du (87)

For any fixed ω ∈ Ω, i ∈ E, b ∈ R, and r ≥ 0, there exists a unique solution Yi,b,r(t) satisfying (87)
because µ∗i satisfies lemma 4.3, and the equation (87) is really an ODE.

Next, for each ω, let t1, t2, ..., tn be the time-jumps on [0, t], and t0 = 0. Then we define the process
(St′)0≤t′≤t recursively as follows:

S0 = x0 (88)

St′ = YJtk ,Stk
,tk(t′ − tk) +Bt′ −Btk for t′ ∈ (tk, tk+1) (89)

Stk = hJtk

(
tk, h

−1
Jtk−1

(tk, St−1
k

)
)

for k = 1, 2, ..., n (90)
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This process is continuous except on t1,t2,...,tn. Furthermore, from (89), the process is right-continuous
on t1,t2,...,tn because the Brownian is continuous. Thus, (St′)0≤t′≤t is right-continuous.

Moreover, for t′ ∈ (tk, tk+1),

St′ − Stn = YJtk ,Stk
,tk(t′ − tk) +Bt′ −Btk − Stn

=

∫ t′−tk

0
µ∗Jtk

(tk + u, YJtk ,Stk
,tk(u) +Btk+u −Btk) du+Bt′ −Btk

=

∫ t′

tk

µ∗Jtk
(u, YJtk ,Stk

,tk(u− tk) +Bu −Btk) du+ +Bt′ −Btk

=

∫ t′

tk

µ∗Jtk
(u, Su) du+ +Bt′ −Btk

(91)

On the other hand,

Stk − St−1
k

= hJtk

(
tk, h

−1
Jtk−1

(tk, St−1
k

)
)
− St−1

k
(92)

and we may compute St−1
k
−Stk−1

using (91). Thus, we may calculate St′ −S0 recursively backwards and

obtain

St′ = S0 +

∫ t′

0
µ∗Ju(u, Su) du+Bt′ +

∑
u≤t′;Ju 6=Ju−

(
hJu
(
u, h−1

Ju−
(u, Su−)

)
− Su−

)
(93)

Thus we have shown that (St′)0≤t′≤t is the solution to (84). This solution is also unique due to the fact
that the constructed YJtk ,Stk

,tk is unique and that Stk− is completely determined by YJtk ,Stk
,tk and the

jump process (Jt′)0≤t′≤t. Because t is an arbitrary positive real number, then we may extend this result
to construct (St)t≥0 and also conclude that this process is also the unique solution to (84).

Now we have this theorem.

Theorem 4.4. The process (St)t≥0 is the unique solution to the regime-switching SDE with jumps given
by (84).

Note that we may also use this method to solve the solution of non-regime-switching SDE as long as the
drift and diffusion term satisfy assumption 4.3.

5 Wong-Zakai Approximations of SDEs solution

5.1 Wong-Zakai Approximations of Non-Regime-Switching SDEs

Now, let us assume that we want to model a trajectory/movement in real life (e.g. stock prices, disease
spread, birds flight pattern) where it is influenced by deterministic component plus randomness i.e.
stochastic component.

dX∗t = µ(t,X∗t ) dt + σ(t,X∗t ) dF ∗t (94)
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Assume that the drift and the diffusion term are suitable enough. We may never know the exact nature
of the random, stochastic component F ∗t , but from observation, we perceive that it may well be assume
as Brownian. Thus, we may model

dXt = µ(Xt) dt + σ(Xt) dBt (95)

We may be able to solve this equation analytically and hope that our solution is close enough to the actual
real-life observation. Unfortunately, even though we perceive the original randomness as Brownian, real
world random paths are rarely true Brownian motion. Furthermore, the random path is likely of finite-
variation, which is not a characteristic of Brownian path.

On the other hand, we may wish to go the other way around. Suppose that we are trying to solve an SDE
where the randomness source is Brownian but it is impossible to solve analytically. Then we may employ
a numerical method. Unfortunately, there is no way to exactly simulate a truly Brownian motion on any
machine. The feasible thing to do is to approximate the Brownian by some finite-variation process e.g.
sampling finite points from the Brownian, then linearly interpolating the in-betweens. Of course as in
any other numerical methods, we wish the computations do indeed approximate the actual solution well
enough.

It turns out that a better model includes a correction term seen in Doss-Sussman result.

dXt = µ(Xt) dt+ σ(Xt(ω)) dBt + +
1

2
σ(Xt)σ

′(Xt) dt (96)

This correction term (the last integral) is also known as the Wong-Zakai approximation term. .

But before we proceed, we first turn to SDE where the source of randomness is of finite-variation. We
have to be sure that such SDE has a unique solution.

Lemma 5.1. Let (Vt)t≥0 is a continuous and finite-variation process on every interval [0, T ], T < ∞
(`[0, T ]×P)-a.e. (`[0, T ] is the Lebesgue measure on [0, T ]) and V0 = 0. Assume that the initial condition
ξ is of finite 2-moment. If µ, σ are Lipschitz continuous, then there exists a unique solution to the SDE

X∗t = ξ +

∫ t

0
µ(X∗s ) ds+

∫ t

0
σ(X∗s ) dVs (97)

where the last integral is interpreted as the Stiltjes type.

PROOF. Following Picard iteration again, define

X
(n+1)∗
t = ξ +

∫ t

0
µ(X(n)∗

s ) ds+

∫ t

0
σ(X(n)∗

s ) dVs (98)

Define also D
(n+1)∗
t := sup

0≤s≤t
|X(n+1)∗

s −X(n)∗
s |. Then we have

D
(n+1)∗
t = sup

0≤u≤t

∣∣∣∣∫ u

0
µ(X(n)∗

s )− µ(X(n−1)∗
s ) ds+

∫ u

0
σ(X(n)∗

s )− σ(X(n−1)∗
s ) dVs

∣∣∣∣
≤ L

[∫ t

0
D(n)∗
s ds+

∫ t

0
D(n)∗
s dVs

]
=≤ L

∫ t

0
D(n)∗
s (ds+ dVs) (99)
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where L is the Lipschitz constant for µ and σ. Iterating this inequality, we can obtain

D
(n+1)∗
t ≤ D(1)∗

t Ln
(t+ Vt)

n

n!
(100)

For fixed t ∈ [0,∞), the right-hand side of (100) is summable across n. If we bound s such that s ∈ [0, t],
s+Vs attains a maximum on the closed interval because of the continuity of (Vs)s≥0. Because of this and

the way D
(n+1)∗
t is defined, the process X(n)∗ converges uniformly on the interval [0, t] to a continuous

process X∗. Letting n → ∞ in (98) and using the uniform convergence of X(n)∗ on [0, t] and the fact
that µ and σ are Lipschitz, we conclude that X∗ satisfies (97). If Y ∗ is another solution to (97), then by
defining D∗t = sup

0≤s≤t
|X∗t − Y ∗t |, we may compute by iteration

D∗t ≤ D∗t
Ln(t+ Vt)

n

n!
∀n ∈ N (101)

implying that D∗t = 0.

Now that we have established the existence and uniqueness to the SDE where the source of random-
ness/diffusion term is from a continuous process with finite variation. We will now see how the solution
approximates the solution to (96) when the continuous & finite-variation process converges to a Brownian
motion, in the appropriate strong sense.

Theorem 5.2. Suppose that ξ, µ, and σ satisfy assumption 4.1. Let
(
(V

(n)
t )t≥0

)∞
n=1

be sequence of almost

surely continuous process with finite variation and (B
(n)
t )t≥0 be a Brownian motion where V

(n)
t converges

strongly (uniformly and almost surely) to B
(n)
t on every compact time-interval, that is

lim
n→∞

sup
0≤s≤T

|V (n)
s −Bs| = 0 a. s. ∀ 0 ≤ T <∞ (102)

Then the solutions to (97) where Vs := V
(n)
s also converge strongly (uniformly and almost surely) to the

solution of (96) on every compact time-interval.

PROOF. Let u and f be as in the construction of Doss-Sussman method and

Y
(n)
t (ω) = Y ∗(V

(n)
t (ω), ξ(ω), t) (103)

X
(n)
t (ω) = u(V

(n)
t , Y

(n)
t ) (104)

Using similar argument as to the construction of Doss-Sussman method,
(
X

(n)
t

)
0≤t<∞ is the unique

solution to (97) where Vs := V
(n)
s (in this case, there is no correction term involving

1

2
σ′(X(n)

s )σ(X(n)
s )

because 〈V 〉s = 0).
Fix ωinΩ, 0 ≤ t < ∞ and a positive integer k. With Lk as the Lipschitz constant to f with respect to
the second-entry as in (67). Now choose ε small enough such that ε < e−Lkt ∧ 1.
Define the stopping times

τk(ω) = t ∧ inf {0 ≤ s ≤ t : |Ys(ω)| ≥ k − 1 or |Bs(ω)| ≥ k − 1} (105)

τ
(n)
k (ω) = t ∧ inf

{
0 ≤ s ≤ t : |Y (n)

s (ω)| ≥ k
}

(106)

Because
(
(V

(n)
t )t≥0

)∞
n=1

converge strongly to (Bt)0≤t<∞ on every compact time-interval, we may choose

n sufficiently large (depending on ω) so that V
(n)
s (ω) is near enough to Bs(ω) so that |f(V (n)

s , Ys(ω)) −
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f(Bs, Ys(ω))| ≤ ε2 and |V (n)
s | ≤ k hold for every s ∈ [0, τk(ω) ∧ τ (n)

k (ω)]. Then∣∣∣∣ dds(Y (n)
s (ω)− Ys(ω))

∣∣∣∣ ≤ |f(V (n)
s (ω), Y (n)

s (ω))− f(V (n)
s (ω), Ys(ω))|

+ |f(V (n)
s (ω), Ys(ω))− f(Vs(ω), Ys(ω))|

≤ Lk|Y (n)
s (ω)− Ys(ω)|+ ε2 (107)

Using Gronwall’s inequality, we obtain

|Y (n)
s (ω)− Ys(ω)| ≤ ε2eLkt < ε ∀ s ∈ [0, τk(ω) ∧ τ (n)

k (ω)] (108)

If τ
(n)
k (ω) < τk(ω), we have an open interval in [0, t] such that |Ys(ω)| < k − 1 but |Y (n)

s (ω)| ≥ k.

This means that |Y (n)
s (ω) − Ys(ω)| ≥ 1 for s ∈ (τ

(n)
k (ω), τk(ω)). But we have |Y (n)

s (ω) − Ys(ω)| < ε

for s ∈ [0, (τ
(n)
k (ω)]. It is impossible for the difference to suddenly jump from less than ε at τ

(n)
k (ω) to

something greater than 1 immediately because both processes Y and Y (n) are continuous. Thus, it should

be certain that τk(ω) ≤ τ (n)
k (ω). We have

lim
n→∞

sup
0≤s≤τk(ω)

|Y (n)
s (ω)− Ys(ω)| = 0 (109)

We may choose k large enough such that τk(ω) = t. Then

lim
n→∞

sup
0≤s≤t

|Y (n)
s (ω)− Ys(ω)| = 0 (110)

The above equation holds for any ω ∈ Ω a.s.

5.2 Wong-Zakai Approximations of Regime-Switching SDEs

We have discussed a method using Lamperti transformation to solve regime-switching SDEs under certain
regularities in assumption 4.3. Next, as we have described in approximations of non-regime switching
SDE in (82), we might be interested to approximate this solution and obtain the rate of convergence i.e.
how good the approximation is.

Consider a collection of finite-variation processes
(
(V λ
t )
)
λ≥0

which converges to a Brownian motion (Bt)t≥0

in some strong enough sense. In the non-regime-switching case, the limit of the approximations include
a correction term. We may first correct for this term in the approximation so that the limit does not
include it anymore as follows:

dXλ
t =

[
µJt(t,X

λ
t )− 1

2
σ′Jt(t,X

λ
t )σJt(t,X

λ
t )

]
dt+ σJt(t,X

λ
t ) dV λ

t , X0 = x0 ∈ R (111)

dXt = µJt(t,Xt) dt+ σJt(t,Xt) dBt, X0 = x0 (112)

We have constructed the solution to (112) by basically ”sewing” the individual solutions on the interval
between two jumps. We may also adopt this method to solve the approximation (111). This might lead
a not-small-enough errors at exactly the time-jumps. These not-small-enough errors might accumulate
over and over.

(Nguyen & Peralta, 2021) treated this problem by making additional restrictions or assumptions as
follows.

Assumption 5.1. For each i ∈ E, the function µ∗i is Lipschitz continuous in the first (time) entry.
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By this assumption, they showed that the errors increase geometrically each time a jump occurs in in
(Jt)t≥0. The problem is, even though it is assumed that there are only finite number of jumps on every
compact time-interval, the number might be arbitrarily large. (Nguyen & Peralta, 2021) treated this by
assuming for every fixed compact time-interval, the number of jumps has ”light” enough tail. Without
loss of generality, we may restrict ourselves to the time-interval [0, 1). Let N be the number of jumps on
[0, 1) i.e.

N = # {s ∈ [0, 1) : Js− 6= Js}

Assumption 5.2. There exists a constant γ0 > such that P (N > n) = o
(
e−n(logn−γ0)

)
.

The assumption above is a slight-generalization of saying ”the number of jumps N is more-or-less a
Poisson process”. (Nguyen & Peralta, 2021) proved if N is stochastically-dominated by a Poisson process
(i.e. there exists a Poisson process N∗ such that P (N ≥ n) ≤ P (N∗ ≥ n)), then it satisfies assumption
5.2. This assumption also generalizes to a case where the jump intensity is, although bounded, might not
be ”uniform” across the interval.

Under assumption 4.3 and the additional assumptions 5.1 and 5.2, Nguyen & Peralta, 2021 obtained a
theorem which basically said that if

(
(V λ
t )
)
λ≥0

converges to (Bt)t≥0 strongly at some rate δ(λ), then

the approximations
(
(Xλ

t )
)
λ≥0

also converges strongly to (Xt)t≥0 at almost the same rate δ(λ)λε for any
ε > 0.

Theorem 5.3 (Nguyen & Peralta, 2021). Let
(
(V λ
t )
)
λ≥0

be a collection of finite-variation processes such

that for some decay function δ : R+ → R+ with limλ→∞ δ(λ) = 0, we have that for all q > 0,

P

(
sup
t∈[0,T ]

|V λ
t −Bt| ≥ αδ(λ)

)
= o(λ−q) (113)

where α = α(q, T ) only depends on q and T . For λ > 0, let (Xλ
t )t∈[0,T ] be the unique solution to the SDE

(111).

Then

1. The family of processes
(
(Xt)t∈[0,T ]

)
δ≥0

converges strongly (uniformly and almost-surely) to the

unique solution to the SDE (112).

2. For all q, T > 0, there exists a constant γ = γ(q, T ) > 0 such that

P

(
sup
t∈[0,T ]

|Xλ
t −Xt| ≥ γδ(λ)λε

)
= o(λ−q) (114)
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